Galena Nuclear Project

NY:T Solutions

2003 Initial contact with Toshiba

2004

DOE report recommended evaluation of 4S as the Galena Energy source (Situational Analysis) City Counsel passed resolution to pursue siting a 4S based facility in Galena.

2005

Galena's meeting with NRC Request funding for white papers

Galena Continued

2006

White papers funding authorized by State of Alaska White papers completed

2007

Toshiba meets with the Nuclear Energy Authority to discuss licensing the Toshiba 4S Reactor

Nuclear Energy

Questions: 1. What about 3 mile Island

3. What about Terrorists

5. What happens to the waste

7. How do you handle an emergency

Nuclear Battery

Battery

Plant Description

Reactor

- Core
 - Metallic fuel core (U-10%Zr)
- Reactivity control Movable reflectors
- Shutdown system
 Shutdown rod and reflectors
- Primary heat transport system
 - Pumps: Annular type Electro-magnetic (EM) pumps
 - IHX: Annular type intermediate heat exchanger

Overview

Sodium cooled fast reactor

30 MWt (10MWe)

Application

- Remote areas of small power demand (e.g., Galena Alaska)
- Considered a candidate for GNEP grid-appropriate small and medium reactor design

Main features

- Passive safety
- No onsite refueling for 30 years
- Low maintenance requirement
- High inherent security

Plant Description

Heat transport systems

- Primary heat transport system: Inside the reactor
- Intermediate heat transport system
 - Steam generator
 - EM pump
 - Air cooler
 - Dump tank
- Water & steam system
 - Turbine Generator

Passive Decay Heat Removal

Heat removal by natural circulation & natural air draft

- RVACS: Natural air draft outside the guard vessel
- Sufficient cooling capacity by only RVACS
- IRACS: Natural circulation of sodium and air draft of air cooler

Air flow pass

RVACS

Loss of offsite power Assumption : Heat removal by only RVACS

Passive Shutdown for Unprotected Events

 Safety Analysis of Unprotected sudden loss of flow Large margin to coolant boiling and fuel melting

Main Design Features

- Safety Features
- Key Features of 4S
 - Passive safety
 - No onsite refueling for 30 years
 - Low maintenance requirement
 - High inherent security

Safety Features

- Low pressure system with pool design and guard vessel
- Negative coolant temperature coefficient promotes safe, stable operation.
- Large margin to coolant boiling or cladding failure
- Reliable, redundant and diverse scram systems
- Smaller excess reactivity with metallic fuel core design – limited potential for reactivity insertion accident
- Passive, reliable, and diverse shutdown heat removal systems

Tests to Support 4S Design

Design realure	Desig	n F	eat	ure
----------------	-------	-----	-----	-----

Long cylindrical core with small diameter

Reflector controlled core

High volume fraction metallic fuel core

Reflector

RVACS

EM pump

Steam generator (Double wall tubes)

Seismic isolation

Verification Item **Required Testing** Nuclear design method of reflector control core with metallic fuel Confirmation of pressure drop Fuel hydraulic test in fuel subassembly Reflector drive mechanism with fine movement mechanism Heat transfer characteristic between vessel and air **RVACS** Structural integrity Stable characteristics pump Structural integrity Heat transfer characteristic Sodium test of Leak detection

isolator

Applicability to nuclear plant

Critical experiment Done Done Test of reflector drive Done Heat transfer test of Done Done Sodium test of EM and Planned Done steam generator Leak detection test and Planned Test of seismic Done

Status

- Submit Design Approval application in 2009
 - Phase 1: Complete a series meetings with NRC to identify issues to be addressed before Design Approval application
 - Phase 2: Submit technical reports and obtain NRC feedbacks to address the issues identified in phase 1
 - Phase 3: Submit Design Approval application and obtain FSER
- Application referencing Design Approval application Toshiba expects U.S. customer will submit a COL

2007 2008	2009	2010	2011	2012
Pre-application review (Phase1) (Phase2)	Design Approval (DA) (Phase3)			
		Prepara Combined Lie	ation of cense (COL)	çal

Small Reactor Market Niche Program Plan

LI.C

Sample Commodity Costs – 10 Megawatts of Electricity Equivalent

Galena Electric Power –a Situational Analysis

Nuclear: Possible Uses of Extra Power

- Hydrogen Production
- Greenhouses
- Aquaculture
- Galena as a test-bed
- Transmission to Neighboring Villages
- Increased use by consumers
- District Heat

4S Preliminary Cost Estimate

 50MWe (135MWt) : 10 MWE variant

- Commercial_plant (mass production phase)
- Plant Construction: \$ 2,500 \$3,000/KWe

Busbar Cost: \$.065 mills-\$.070 /KW-hr*

LI.C

GNEP The Global Nuclear Energy Partnership

Greater Energy Security in a Cleaner, Safer World

President George Bush

GNEP Reprocessing

Spent fuel rods

GNEP Element Demonstrate Small Scale Reactors

How the reactors would work

Small, more proliferation-resistant reactors could incorporate features that would ... include fuel designs that offer very long-life fuel loads (that last the entire life of the reactor); effective... safeguards ... to promote non-proliferation; potential for district heating and potable water production; fully passive safety systems; simple operation that requires minimal in-country nuclear infrastructure; use of as much existing licensed or certified technology as possible; and use of advanced manufacturing techniques.

Mohamed ElBaradei

Nobel laureate Mohamed ElBaradei, director general of the International Atomic Energy Agency, gave this year's David J. Rose Lecture on "Nuclear Technology in a Changing World: Have We Reached a Turning Point?" Photo / Donna Coveney

Why Nuclear??

Remember the 1970's??

- Long gas lines
- High Gas prices
- Emphasize Alternative energy
- Domestic vs Oil Imports
- Global Cooling

Where Will the Hydrogen Come From?

LI.C

Emission Free Energy in the United States

[1]

Solutio

Vision for the future

The natural gas pipeline,
Geothermal development at Mt Spurr,
Hydroelectric projects,
Wind projects,
Nuclear power
Coal to liquid project

Conclusions

Nuclear Power -50 years without a fatality

Secure 19% enrichment -non weapons grade

Burner Reactor -uses reprocessed fuel

Auto shut down -no operator error

Toshiba 4S Project

Thank you

Marvin Yoder 907 227-7158 marviny59@gmail.net